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Wrinkling Analysis in a Film Bonded to a Compressible
Compliant Substrate in Large Deformation

Zhicheng Ou1, Xiaohu Yao1, Xiaoqing Zhang1,2 and Xuejun Fan3

Abstract: The buckling of a thin film on a compressible compliant substrate in
large deformation is studied. A finite-deformation theory is developed to model
the film and the substrate under different original strain-free configurations. The
neo-Hookean constitutive relation is applied to describe the substrate. Through the
perturbation analysis, the analytical solution for this highly nonlinear system is ob-
tained. The buckling wave number, amplitude and critical condition are obtained.
Comparing with the traditional linear model, the buckling amplitude decreases. The
wave number increases and relates to the prestrain. With the increment of Poisson’s
ratio of the substrate, the buckling wave number increases, but the amplitude de-
creases. The displacements near the interface are different in two models.
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1 Introduction

Stretchable electronics is now attracting considerable attention, due to its broad
range of applications, such as microelectronics, medicine, clothing and military.
Comparing with traditional printing and flat panel displays, flexible displays have
both of their advantages, which are soft and portable, and able to store more infor-
mation [Rogers and Bao (2002)]. The flexible sensors integrated into the clothes
can monitor the health information of human body [Wagner, Lacour, Jones, Hsu,
Sturm, Li and Suo (2004)]. Travelers and athletes can carry flexible solar panels
for power [Schubert and Werner (2006)]. To make the device stretchable, buck-
ling of a stiff film bound to a compliant substrate is applied. Khang, Jiang, Huang
and Rogers (2006) produced a stretchable form of silicon based on a PDMS sub-
strate. It is periodic and wavelike in microscale. It can be reversibly stretched and
compressed in large deformation without damage.
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Huang, Hong and Suo (2005) developed a model of a stiff elastic thin film on a
compliant elastic substrate subjected to an axial strain. They obtained the buckling
wavelength and amplitude of the film and developed a method to reveal the two-
dimensional patterns. Huang (2005) studied the wrinkling process of an elastic film
on a viscoelastic layer. Linear perturbation analysis is conducted to reveal the ki-
netics of wrinkling in the film. Huang and Suo (2002) studied the wrinkling process
of this system by using the lubrication theory for the viscous flow and the nonlin-
ear plate theory for the elastic film, and presented a more rigorous analysis for all
thickness range of the viscous layer. Im and Huang (2008) considered the wrin-
kle patterns of anisotropic crystal films on viscoelastic substrates. Jiang, Khang,
Fei, Kim, Huang, Xiao and Rogers (2008) considered the finite width effect of
thin-films buckling on compliant substrate. Song, Jiang, Choi, Khang, Huang and
Rogers (2008) studied the two-dimensional buckling including checkerboard and
herringbone modes, and found that the herringbone mode corresponds to the low-
est energy, as observed in experiments. Chen and Hutchinson (2004) also showed
that the herringbone mode constituted a minimum energy configuration among a
limited set of competing modes. Audoly and Boudaoud (2008) studied the sec-
ondary instabilities of these modes and presented a weakly nonlinear post-buckling
analysis. They found that the square checkerboard mode was optimal just above
the threshold under equi-biaxial prestrain. Cai, Breid, Crosby, Suo and Hutchin-
son (2011) studied the thin stiff films on compliant elastic substrates subjected to
equi-biaxial compressive stress states, which were observed to buckle into vari-
ous periodic patterns including checkerboard, hexagonal and herringbone. For flat
films, the checkerboard mode was preferred only above the threshold. Nair, Farkas
and Kriz (2008) studied of size effects and deformation of thin films due to nanoin-
dentation using molecular dynamics simulations. Kurapati, Lu and Yang (2010)
used the finite element method to analyze the spherical indentation of elastic film
and substrate structures.

In previous studies, the substrate is usually described by small deformation theory
and linear elastic constitutive relation. But when the structure are subjected to large
loads and buckles into large deformation, the small deformation hypothesis is no
longer applicable. Song, Jiang, Liu, Khang, Huang, Rogers, Lu and Koh (2008)
analyzed the large deformation of this structure by perturbation method. The orig-
inal strain-free configuration of the film was considered. The finite strain theory
and hyperelasticity constitutive relation were applied to describe the substrate. For
the incompressible substrate, the buckling features were deduced analytically and
coincided well with the experiments and simulations. Zhu, Zhou and Fan (2014)
studied rupture and instability of soft films due to moisture vaporization in micro-
electronic devices. Neo-Hookean, Mooney–Rivlin, and Ogden’s models were used
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to derive the analytical solutions. Zhang and Yang (2013) studied the methods
of extracting the mechanical properties of nonlinear elastic materials under large
deformation and built general relationships of the indentation load and depth of
hyperelastic materials.

This paper focuses on the case of compressible substrate. The displacements in
the linear and nonlinear models are compared. The influence of the compressibil-
ity of the substrate on buckling is discussed. The coordinate systems are based on
the original strain-free configurations of the film and the substrate. A hyperelas-
ticity, neo-Hookean, constitutive relation is applied to describe the substrate under
finite deformation theory. Through the perturbation analysis, the displacement of
substrate is solved analytically. The buckling wave number, amplitude and critical
condition are obtained by energy method. Comparing with the traditional linear
model, the buckling amplitude in the nonlinear model decreases. The wave number
increases and relates to the prestrain. With the increment of Poisson’s ratio of the
substrate, the buckling wave number increases, but the amplitude decreases. The
displacements near the interface in two models are different.

2 Displacement

2.1 Model

A stiff elastic thin film is bonded to a compliant elastic thick substrate without
slipping, as shown in Fig. 1. H and h are the thickness of the substrate and the film,
respectively, and H�h. The substrate is imposed a uniaxial prestrain ε0 first, and
then is boned to a stress-free film, as shown in Fig. 1(a). After the prestrain in the
substrate released, the structure buckles, as shown in Fig. 1(b). Since the structure
is only imposed a uniaxial load and the length (x2) is much larger than the buckling
amplitude, the substrate can be simplified as a plane strain problem, and the thin
film can be modeled as a beam undergoing large rotation. The Young’s modulus
and Poisson’s ratio of the film and substrate are E f and v f Eand v. The film is much
harder than the substrate, so E f �E.

The original strain-free states of the film and the substrate are asynchronous, as
shown in Fig. 2. In the first step, Fig. 2(a), the substrate is strain-free with the
original length l. In the second step, Fig. 2(b), the substrate is stretched to the
length (1+ε0)l with a prestrain ε0, but the film is free with the original length
(1+ε0)l and attached to the substrate. In the third step, Fig. 2(c), the substrate
is relaxed to its original length l, and the film buckles under compression. Two
coordinate systems are based on the strain-free configurations of the film and the
substrate, as shown in Fig. 2(a) and (b), with the transformation: x1 = ξ x′1 =
x′1(1+ ε0)

−1.
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Figure 1: A stiff thin film on a compliant thick substrate: (a) The film is bonded to
a pre-strained substrate; (b) The structure buckles after releasing the prestrain.

Figure 2: The buckling process and coordinate systems (a) Free substrate; (b)
Stretched substrate and free film; (c) Relaxed substrate and buckled film.

In this paper, two models are compared:

(1) Linear model. The small deformation theory and linear elasticity constitutive
relation, Hookean law, are applied to describe the substrate. The same coordinate
system under the strain-free configuration of the substrate is applied to describe the
film and the substrate.

(2) Nonlinear model. The finite deformation theory and nonlinear hyperelasticity
constitutive relation, neo-Hookean law, are applied to describe the substrate. Dif-
ferent coordinate systems under the strain-free configurations of the film and the
substrate are applied.

2.2 Film

Under the coordinate system based on the strain-free configuration of the film, Fig.
2(b) the in-plane displacement and deflection in the midplane are denoted by u1 and
u3 respectively and they are independent of the thickness. When the film buckles,
it undergoes large rotation, so the influence of the deflection should be considered
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According to the finite deformation theory, the axial strain is

ε11 =
du1

dx′1
+

1
2

(
du3

dx′1

)2

(1)

The membrane force is given by Hookean law (plane stress) as

N11 = hσ11 = hĒ f εx. (2)

where effective modulus is Ē f = E f /(1− v2
f ). The shear traction at the interface

is too small to be neglected [Huang, Hong and Suo (2005)], so the equilibrium
equation is

T1=
dN11

dx′1
= 0 (3)

The uniaxial buckling mode is assumed as a cosine curve, the deflection of the film
is assumed as

u3 = Acos(kx1)=Acos(ξ kx′1) (4)

where A and k are the amplitude and wave number in the buckled configuration, Fig.
2(c). The wavelength is assumed much larger than the film thickness and amplitude,
λ = 2π/k� A, h, or Ak, hk�1. From Eqs.(1)∼(4), the in-plane displacement is
obtained,

u1 =
1
8

ξ A2k sin(2kξ x′1)− ε0ξ x′1 =
1
8

ξ A2k sin(2kx1)− ε0x1 (5)

The midplane displacement consists of two parts. One is the axial displacement
-εx caused by axial compression the other is the wavy displacement caused by
buckling.

The strain energy is the sum of bending and stretching contribution. Their strain
energy densities are

Wb =
h3Ē f

24

(
d2u3

dx′21

)2

, Wm =
1
2

σ11ε11 (6)

After integration, the strain energy of the film is

U f =
∫ l/ξ

0
(Wb+Wm)dx′1=

1
96

ξ Ē f hl
[
3(ξ A2k2−4ε0)2+2ξ

2A2k4h2] (7)

In traditional analysis, the strain-free configuration of the film is the same as the
substrate, so ξ = 1.
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2.3 Substrate

Under the coordinate system based on the strain-free configuration of the substrate,
Fig. 2(a), the displacement is denoted by uI (I=1,3). The deformation gradient is
FIJ= δ IJ +uIJ . The Green strain tensor is

EIJ =
1
2

(uI,J +uJ,I +uK,IuK,J) (8)

Nonlinear constitutive relation is used,

TIJ =
∂Ws

∂EIJ
(9)

where Ws is the strain energy density, and TIJ is the 2nd Piola–Kirchhoff stress. In
neo-Hookean constitutive law, the strain energy density has the form that

Ws =C1(J−2/3I1−3)+D1(J−1)2 (10)

where the material constants are C1 = E/4(1+v), D1 = E/6(1-2v). J is the volume
change at a point and equals to the determinant of deformation gradient F, J=
det F = |δ IJ+2EIJ|1/2. The first invariant I1 is the trace of the left Cauchy-Green
strain tensor, that is I1= trB = trFFT = δ II+ 2trE. Specially, for the incompressible
material, J= 1, the strain energy density can be simplified as Ws= C1(I1−3). The
force equilibrium equation and the traction on the surface are

(FIKTJK),J = 0, TI = FIKTJKnJ (11)

where nJ is the unit normal vector of the surface In plane strain problem, the equa-
tions above can be simplified. The volume change J and the first invariant I1 are

J2 = 1+2E11 +2E33 +4E11E33−4E13E31, I1 = 3+2E11 +2E33 (12)

By substituting Eq.(12) into Eqs. (9)∼(10), the 2nd Piola–Kirchhoff stress compo-
nents are obtained,

T11=
2

3J4/3

[
C1(1+4E11 +8E11E33−4E2

33−12E2
13)+3D1J1/3(J−1)(1+2E33)

]
T33=

2
3J4/3

[
C1(1+4E33 +8E11E33−4E2

11−12E2
13)+3D1J1/3(J−1)(1+2E11)

]
T13=T31=

4
3J4/3

[
2C1E13(1+E11 +E33)−3D1J1/3(J−1)E13

]
(13)

From Eq.(11), the equilibrium equations and tractions are expanded,{
(F11T11 +F13T13),1 +(F11T31 +F13T33),3 = 0
(F31T11 +F33T13),1 +(F31T31 +F33T33),3 = 0

(14)
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T1 = F11T31 +F13T33, T3 = F31T31 +F33T33 (15)

The bottom of the substrate is free. At the interface, the shear traction is neglected,
and the normal displacement is continuous. The boundary conditions are

x3=−H : T1 = T3 = 0; x3 = 0 : u3 = Acos(kx1), T1 = 0 (16)

From Eq.(8), equilibrium equations (14) can be simplified as a boundary value
problem about the displacement. The perturbation method is applied to solve this
highly nonlinear problem. Since the amplitude A is much smaller than the wave-
length λ , a small dimensionless parameter δ = A/λ is used to expand the displace-
ment to power series,{

u1(x1,x3) = A
[
u10(x1,x3)+δu11(x1,x3)+δ 2u12(x1,x3)+ · · ·

]
u3(x1,x3) = A

[
u30(x1,x3)+δu31(x1,x3)+δ 2u32(x1,x3)+ · · ·

] (17)

By substituting Eq.(17) into (14)∼(16), the displacement in each order can be
solved

u10 =
1−2v+ kx3

2−2v
ekx3 sin(kx1); u30 =

(
1+

kx3

2−2v

)
ekx3 cos(kx1) (18)

u11 =
π

144(1− v)3 e2kx3sin(2kx1)
[
2kx3(80v3−96v2+81v−40)−80v3+24v2+63v−32

]
u31 =−

π

144(1− v)3

{
2kx3e2kx3

[
(80v3−96v2 +81v−40)cos(2kx1)+3kx3(8v−7)

+6(8v2−15v+7)
]
+(1− e2kx3)(160v3−144v2 +30v+1)

}
(19)

u12 =
π2

248832(1− v)5e
kx3
{
64e2kx3sin(3kx1)

[
3kx3(640v5+6544v4−13704v3+10642v2

−4403v+906)−3520v5 +1808v4 +4344v3−4774v2 +1739v−222
]

+9e2kx3sin(kx1)
[
72k3x3

3(8v−7)+4k2x2
3(5120v4−13056v3+18720v2−15196v

+4797)+kx3(40960v5−114688v4+134656v3−102368v2+55208v−14171)

−10240v5 +108544v4−106816v3−27520v2 +65506v−20065
]

−9sin(kx1)
[
kx3(25600v4−39680v3 +6816v2 +12592v−4991)+71680v5

+62464v4−186048v3 +67840v2 +24094v−12543
]}

(20)
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u32 =−
π2

82944(1− v)5 ekx3
{
64kx3e2kx3cos(3kx1)(640v5+6544v4−13704v3+10642v2

−4403v+906)+3e2kx3 cos(kx1)
[
24k3x3

3(256v2−456v+209)

+36k2x2
3(5120v4−8960v3 +7456v2−4820v+1607)

+ kx3(40960v5−65536v4 +77824v3−121760v2 +97544v−27161)

+2(87040v5−86528v4 +1215−19872v3 +48880v2−16823v)
]

−3cos(kx1)
[
kx3(25600v4−39680v3 +6816v2 +12592v−4991)

+2(87040v5−86528v4−19872v3 +48880v2−16823v+1215)
]}

(21)

In the linear model, the displacement is the first order of displacement, that is
Eq.(18). In the nonlinear model, the tangential displacement u1 at the surface (z
=0) is

u∗1 =−
1

497664(1− v)5 A3k2 [9sin(kx1)(40960v5−23040v4−39616v3 +47680v2

−20706v+3761)+32sin(3kx1)(3520v5−1808v4−4344v3+4774v2−1739v

+222)]− 80v3−24v2−63v+32
288(1− v)3 A2k sin(2kx1)+

1−2v
2(1− v)

Asin(kx1)

(22)

In the linear model, u∗1 is the first term in Eq.(22)

By substituting the displacements (18)∼(21) into Eqs. (8) and (10), the strain en-
ergy can be integrated as

Us =
∫ 0

−H

∫ l

0
Wsdx1dx3 =

1
8

ĒslkA2(1+ γA2k2) (23)

γ =
2607−14720v+29984v2−7296v3−52736v4 +51200v5

55296(1− v)4 (24)

where the effective modulus is Ēs = E/(1− v2). In the linear model, the strain
energy is the first term of Eq.(23), or γ = 0. For the incompressible substrate (v=
1/2 and γ = 5/128), the displacements in the nonlinear model are

u1 =Akx3ekx3 sin(kx1)−
1
8

A2ke2kx3(6kx3 +1)sin(2kx1)

+
1

32
A3k2ekx3

{
64kx3e2kx3 sin(3kx1)

+sin(kx1)
[
13kx3 +24− e2kx3(8k3x3

3−84k2x2
3 +45kx3 +40)

]}
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u3 =Aekx3(1− kx3)cos(kx1)+
1
4

A2k2e2kx3x3 [2kx3−2+3cos(2kx1)]

− 1
32

A3k2ekx3
{

64kx3e2kx3 cos(3kx1)+ cos(kx1) [13kx3 +11

+e2kx3(40k3x3
3 +116k2x2

3−71kx3−11)
]} (25)

And the strain energy is

Us =
1
6

EklA2
(

1+
5

128
A2k2

)
(26)

Song, Jiang, Liu, Khang, Huang, Rogers, Lu and Koh (2008) have the same result
when the substrate is incompressible.

3 Buckling

From Eqs. (7) and (23), the total potential energy of the film and substrate is

U =U f +Us

=
1
32

lk3A4(4γĒs+ξ
3khĒ f )+

1
48

lkA2[6Ēs+Ē f hkξ
2(ξ k2h2−12ε0)

]
+

1
2

ξ lhĒ f ε
2
0

(27)

According to the principle of minimum potential energy, the buckling govern-
ment equations are deduced by minimizing the total energy (27), that is ∂U /∂A =
∂U /∂k= 0,{

µ(1+ γA2k2)− (ξ kh)3=0

µ(3+5γA2k2)+3ξ
2hk(ξ A2k2−4ε0)=0

(28)

where the relative effective modulus is µ = 3Ēs/Ē f � 1. If setting ξ = 1 and γ

= 0, Eqs. (28) degenerates to the case of the linear model: µ - h3k3= 0; µ +
hk(A2k2−4ε0) = 0. It is easy to solve the buckling wave number, critical prestrain
and amplitude,

k̄=
1
h

µ
1/3, ε̄0=

1
4

µ
2/3, Ā=h

√
ε0

ε̄0
−1 (29)

The variable with a bar indicates the result in the linear model. The wave number
only relates to the material property but not to prestrain. By substituting Eq. (29)
into (27), the minimum potential energy in the linear model is

Ū=
1

32
hlĒ f µ

2/3(8ε0−µ
2/3) (30)
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In the nonlinear model, the critical prestrain is deduced by setting A=0 in Eq. (28),

ε̃0 =
µ2/3

4−µ2/3 =
ε̄0

1− ε̄0
≈ ε̄0 (31)

It is only dependent on the material property and approximate to the critical pre-
strain in the linear model. The ratios between the linear and nonlinear model of the
buckling amplitude and wave number are assumed that Ã=αĀ, k̃=κ k̄. The variable
with a tilde indicates the result in the nonlinear model. From Eq. (29), the buckling
government equations (28) can expressed about the parameters α and κ ,{

1−ξ
3
κ

3 +α
2
κ

2
γ(4ε0−µ

2/3) = 0

3µ
2/3−12ξ

2
κε0 +α

2
κ

2(5γµ
2/3 +3ξ

3
κ)(4ε0−µ

2/3) = 0
(32)

Neglecting the small quantity µ (when the prestrain is not too small), the parame-
ters are solved,

κ ≈ (1+ ε0) [4γε0(1+ ε0)+1]1/3 , α ≈ (1+ ε0)
−1/2 [4γε0(1+ ε0)+1]−1/3 (33)

By substituting Eqs. (29), (30) and (33) into (27), the minimum potential energy in
the nonlinear model Ũ = φŪ is obtained. The ratio between two models is

φ ≈ [4γε0(1+ ε0)+1]2/3 (34)

From Eqs. (29), (30), (33) and (34), the buckling wave number, amplitude and
critical prestrain and minimum potential energy are

k̃=
(1+ ε0)ζ

h
, Ã=

h
ζ

√
4ε0−µ2/3

1+ ε0
, ε̃0=

µ2/3

4−µ2/3 , Ũ=
ζ 2hlĒ f

32
(8ε0−µ

2/3) (35)

where ζ = [4µγε0(1+ε0) +µ]1/3. Different from the linear model, the buckling
wave number is not only dependent on the material properties but also the prestrain.

4 Discussion

4.1 Substrate

The displacement fields of the substrate in linear and nonlinear models are com-
pared by setting A= 3 µm, k= 0.367 µm−1 (δ = 0.175) and v= 1/2, as shown in
Fig. 3 and 4 At the top of the substrate (the interface to the film), the distribution
of displacement in two models is different. The spatial period (x1) in the nonlinear
model is nearly two times as that in the linear model. From Eq. (22), the tangential
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(a) (b)

Figure 3: Displacements (a) u1 and (b) u3 of the substrate in the nonlinear model
(µm).

(a) (b)

Figure 4: Displacements (a) u1 and (b) u3 of the substrate in the linear model (µm).

Figure 5: The tangential displacement of the substrate at the interface.
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displacement of the substrate at the surface is shown in Fig. 5. When the sub-
strate is incompressible (v= 1/2), u∗1 is zero in the linear model, but nonzero in the
nonlinear model.

From Eq. (24), Fig. 6 shows the hyperelastic coefficient γ about the Poisson’s ratio
v. It ranges from 0.029 (v≈ 0.31) to 0.047 (v= 0.1). From Eq. (23), the ratio of the
strain energy of the substrate in two models is φ s= 1 + γA2k2 =1 + 4γπ2δ 2 > 1. The
strain energy of the substrate in the nonlinear model is large than that in the linear
model. With the increment of the Poisson’s ratio v, the energy ratio φ s decreases
first and then increases, as shown in Fig. 7(a). When v ≈ 0.31, the energy ratio
φ s reaches the minimum.With the increment of δ , the energy ratio φ s increases, as
shown in Fig. 7(b).

Figure 6: The hyperelastic coefficient γ .

4.2 Buckling

For the silicon film and PDMS substrate, the material and geometric parameters
are E f = 130GPa, v f = 0.28, E= 1.8MPa, v= 0.48, h= 0.1µm, l= 1mm. The buckling
features under different prestrains are obtained according to Eq. (35) and (29), as
shown in Tab. 1

Fig. 8 shows the buckling wave number and amplitude about the prestrain ε in
two models In the linear model, the buckling wave number k is constant But in
the nonlinear model, the wave number increases with the increment of prestrain, as
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(a) (b)

Figure 7: The ratio of substrate’s strain energy between two models about (a) the
Poisson’s ratio and (b) δ =A/ λ .

Table 1: The buckling features in two models.

k(µm−1) A(µm)
ε 0.1 0.3 0.5 0.1 0.3 0.5

Nonlinear 0.407 0.487 0.571 1.628 2.563 3.032
Linear 0.367 0.367 0.367 1.717 2.977 3.844

shown in Fig. 8(a) The buckling amplitude A in the nonlinear model is less than
that in the linear model, as shown in Fig. 8(b) With the increment of Poisson’s ratio
v, the buckling wave number increase, but the amplitude decreases as shown in Fig.
9. The stronger the compressibility of the substrate (the less Poisson’s ratio) is, the
larger the amplitude and wavelength will be.

Fig. 10 shows the ratios of the buckling wave number κ , amplitude α and total
energy φ between two models about the prestrain. With the increment of prestrain,
the ratios of buckling wave number κ and total energy φ are larger than one and
increase, but the ratio of amplitude α is less than one and decreases. The ratios of
buckling wave number κ and amplitude α change significantly when the prestrain
increase
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(a) (b)

Figure 8: The buckling (a) wave number and (b) amplitude about the prestrain in
two models.

(a) (b)

Figure 9: The buckling (a) wave number and (b) amplitude about Poisson’s ratio in
the nonlinear model.

4.3 Film

From Eq. (5), the midplane displacement of the film consists of two parts. Parts of
the wavy displacements caused by buckling in two models are

ũ f
1 =

1
8

ξ Ã2k̃ sin(2k̃x1) in nonlinear model

ū f
1 =

1
8

Ā2k̄ sin(2k̄x1) in linear model
(36)
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Figure 10: The ratio of wave number κ , amplitude α and total energy ϕ between
two models about the prestrain.

Figure 11: The wavy displacement of the film caused by buckling.

They are shown in Fig. 11 Comparing with the linear model, the prestrain not
only influences the amplitude but also the wavelength. The larger the prestrain is,
the shorter the wavelength will be in the nonlinear model. The amplitude in the
nonlinear model is smaller than that in the linear model, and when the prestrain
increase, such difference becomes remarkable.
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5 Conclusion

This paper studies the buckling of the film and substrate structure in large defor-
mation. A nonlinear model is developed. The film and the substrate are described
by finite deformation theory under different original strain-free configurations. The
neo-Hookean constitutive relation is applied to describe the substrate Through the
perturbation analysis, the displacement of the substrate under a uniaxial prestrain is
obtained. The buckling wave number, amplitude and critical condition are obtained
by energy method.

The displacement fields near the interface are different in two models. The strain
energy of the substrate in the nonlinear model is large than that in the linear model.
Comparing with the traditional linear model, the buckling amplitude in the nonlin-
ear model decreases, but the wave number increases and relates to the prestrain. In
the nonlinear model, the stronger the compressibility of the substrate is, the larger
the buckling amplitude and wavelength will be.
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